Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1321560, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38444858

RESUMO

Introduction: Chronic rhinosinusitis (CRS) is a chronic inflammatory disease of the sinonasal mucosa with distinct endotypes including type 2 (T2) high eosinophilic CRS with nasal polyps (eCRSwNP), T2 low non-eosinophilic CRS with nasal polyps (neCRSwNP), and CRS without nasal polyps (CRSsNP). Methods: Given the heterogeneity of disease, we hypothesized that assessment of single cell RNA sequencing (scRNA-seq) across this spectrum of disease would reveal connections between infiltrating and activated immune cells and the epithelial and stromal populations that reside in sinonasal tissue. Results: Here we find increased expression of genes encoding glycolytic enzymes in epithelial cells (EpCs), stromal cells, and memory T-cell subsets from patients with eCRSwNP, as compared to healthy controls. In basal EpCs, this is associated with a program of cell motility and Rho GTPase effector expression. Across both stromal and immune subsets, glycolytic programming was associated with extracellular matrix interactions, proteoglycan generation, and collagen formation. Furthermore, we report increased cell-cell interactions between EpCs and stromal/immune cells in eCRSwNP compared to healthy control tissue, and we nominate candidate receptor-ligand pairs that may drive tissue remodeling. Discussion: These findings support a role for glycolytic reprograming in T2-elicited tissue remodeling and implicate increased cellular crosstalk in eCRSwNP.


Assuntos
Pólipos Nasais , 60523 , Humanos , Células Epiteliais , Movimento Celular , Doença Crônica , Glicólise
2.
Sci Immunol ; 9(92): eabq4341, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38306414

RESUMO

The olfactory neuroepithelium serves as a sensory organ for odors and forms part of the nasal mucosal barrier. Olfactory sensory neurons are surrounded and supported by epithelial cells. Among them, microvillous cells (MVCs) are strategically positioned at the apical surface, but their specific functions are enigmatic, and their relationship to the other specialized epithelial cells is unclear. Here, we establish that the family of MVCs comprises tuft cells and ionocytes in both mice and humans. Integrating analysis of the respiratory and olfactory epithelia, we define the distinct receptor expression of TRPM5+ tuft-MVCs compared with Gɑ-gustducinhigh respiratory tuft cells and characterize a previously undescribed population of glandular DCLK1+ tuft cells. To establish how allergen sensing by tuft-MVCs might direct olfactory mucosal responses, we used an integrated single-cell transcriptional and protein analysis. Inhalation of Alternaria induced mucosal epithelial effector molecules including Chil4 and a distinct pathway leading to proliferation of the quiescent olfactory horizontal basal stem cell (HBC) pool, both triggered in the absence of olfactory apoptosis. Alternaria- and ATP-elicited HBC proliferation was dependent on TRPM5+ tuft-MVCs, identifying these specialized epithelial cells as regulators of olfactory stem cell responses. Together, our data provide high-resolution characterization of nasal tuft cell heterogeneity and identify a function of TRPM5+ tuft-MVCs in directing the olfactory mucosal response to allergens.


Assuntos
Mucosa Olfatória , 60419 , Humanos , Camundongos , Animais , Mucosa Olfatória/metabolismo , Mucosa Nasal , Células Epiteliais/metabolismo , Proliferação de Células , Quinases Semelhantes a Duplacortina
3.
Allergy ; 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38164813

RESUMO

BACKGROUND: Lung function is an independent predictor of mortality. We evaluated the lung function trajectories of a cohort of patients with asthma receiving biologic therapy. METHODS: We identified 229 monoclonal antibody-naïve adult patients with moderate-to-severe asthma who initiated omalizumab, mepolizumab, or dupilumab between 2010 and 2022 in a large healthcare system in Boston, MA. Generalized additive mixed models were used to estimate the lung function trajectories during the 156 weeks following biologic initiation. Response was defined as an improvement in FEV1 or a decrease of ≤0.5% per year. The Kaplan-Meier estimator was used to assess time to no additional improvement in FEV1 in responders. All models were adjusted for age, sex, body mass index, smoking status, baseline exacerbation rate, and baseline blood eosinophil count. RESULTS: Eighty-eight patients initiated mepolizumab, 76 omalizumab, and 65 dupilumab. Baseline eosinophil count was highest in the mepolizumab group (405 cells/mcL) and lowest for omalizumab (250 cells/mcL). Both FEV1 and FVC improved in the mepolizumab group (FEV1 + 20 mL/year; FVC +43 mL/year). For omalizumab, there was an initial improvement in the first year followed by decline with an overall FEV1 loss of -44 mL/year and FVC -32 mL/year. For dupilumab, both FEV1 (+61 mL/year) and FVC (+74 mL/year) improved over time. Fifty percent of the mepolizumab group, 58% omalizumab, and 72% of dupilumab were responders. The median time to no additional FEV1 improvement in responders was 24 weeks for omalizumab, 48 weeks for mepolizumab, and 57 weeks for dupilumab. CONCLUSION: In this clinical cohort, mepolizumab, omalizumab, and dupilumab had beneficial effects on FEV1 and FVC with distinct post-initiation trajectories.

4.
bioRxiv ; 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37904989

RESUMO

Background: The airway epithelium plays a central role in the pathogenesis of chronic respiratory diseases such as asthma and chronic rhinosinusitis with nasal polyps (CRSwNP), but the mechanisms by which airway epithelial cells (EpCs) maintain inflammation are poorly understood. Objective: We hypothesized that transcriptomic assessment of sorted airway EpCs across the spectrum of differentiation would allow us to define mechanisms by which EpCs perpetuate airway inflammation. Methods: Ethmoid sinus EpCs from adult patients with CRS were sorted into 3 subsets, bulk RNA sequenced, and analyzed for differentially expressed genes and pathways. Single cell RNA-seq (scRNA-seq) datasets from eosinophilic and non-eosinophilic CRSwNP and bulk RNA-seq of EpCs from mild/moderate and severe asthma were assessed. Immunofluorescent staining and ex vivo functional analysis of sinus EpCs were used to validate our findings. Results: Analysis within and across purified EpC subsets revealed an enrichment in glycolytic programming in CRSwNP vs CRSsNP. Correlation analysis identified mammalian target of rapamycin complex 1 (mTORC1) as a potential regulator of the glycolytic program and identified EpC expression of cytokines and wound healing genes as potential sequelae. mTORC1 activity was upregulated in CRSwNP, and ex vivo inhibition demonstrated that mTOR is critical for EpC generation of CXCL8, IL-33, and CXCL2. Across patient samples, the degree of glycolytic activity was associated with T2 inflammation in CRSwNP, and with both T2 and non-T2 inflammation in severe asthma. Conclusions: Together, these findings highlight a metabolic axis required to support epithelial generation of cytokines critical to both chronic T2 and non-T2 inflammation in CRSwNP and asthma.

5.
J Allergy Clin Immunol ; 151(6): 1536-1549, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36804595

RESUMO

BACKGROUND: Chronic rhinosinusitis with nasal polyposis (CRSwNP) is a type 2 (T2) inflammatory disease associated with an increased number of airway basal cells (BCs). Recent studies have identified transcriptionally distinct BCs, but the molecular pathways that support or inhibit human BC proliferation and differentiation are largely unknown. OBJECTIVE: We sought to determine the role of T2 cytokines in regulating airway BCs. METHODS: Single-cell and bulk RNA sequencing of sinus and lung airway epithelial cells was analyzed. Human sinus BCs were stimulated with IL-4 and IL-13 in the presence and absence of inhibitors of IL-4R signaling. Confocal analysis of human sinus tissue and murine airway was performed. Murine BC subsets were sorted for RNA sequencing and functional assays. Fate labeling was performed in a murine model of tracheal injury and regeneration. RESULTS: Two subsets of BCs were found in human and murine respiratory mucosa distinguished by the expression of basal cell adhesion molecule (BCAM). BCAM expression identifies airway stem cells among P63+KRT5+NGFR+ BCs. In the sinonasal mucosa, BCAMhi BCs expressing TSLP, IL33, CCL26, and the canonical BC transcription factor TP63 are increased in patients with CRSwNP. In cultured BCs, IL-4/IL-13 increases the expression of BCAM and TP63 through an insulin receptor substrate-dependent signaling pathway that is increased in CRSwNP. CONCLUSIONS: These findings establish BCAM as a marker of airway stem cells among the BC pool and demonstrate that airway epithelial remodeling in T2 inflammation extends beyond goblet cell metaplasia to the support of a BC stem state poised to perpetuate inflammation.


Assuntos
Pólipos Nasais , Rinite , Sinusite , Humanos , Animais , Camundongos , Receptor de Insulina/metabolismo , Interleucina-13/metabolismo , Interleucina-4/metabolismo , Inflamação/metabolismo , Sinusite/metabolismo , Células Epiteliais/metabolismo , Transdução de Sinais , Doença Crônica , Pólipos Nasais/metabolismo , Rinite/metabolismo
6.
J Allergy Clin Immunol ; 149(6): 2062-2077, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35304158

RESUMO

BACKGROUND: Mast cells (MCs) are pleiotropic cells that accumulate in the esophagus of patients with eosinophilic esophagitis (EoE) and are thought to contribute to disease pathogenesis, yet their properties and functions in this organ are largely unknown. OBJECTIVES: This study aimed to perform a comprehensive molecular and spatial characterization of esophageal MCs in EoE. METHODS: Esophageal biopsies obtained from patients with active EoE, patients with EoE in histologic remission, and individuals with histologically normal esophageal biopsies and no history of esophageal disease (ie, control individuals) were subject to single-cell RNA sequencing, flow cytometry, and immunofluorescence analyses. RESULTS: This study probed 39,562 single esophageal cells by single-cell RNA sequencing; approximately 5% of these cells were MCs. Dynamic MC expansion was identified across disease states. During homeostasis, TPSAB1highAREGhigh resident MCs were mainly detected in the lamina propria and exhibited a quiescent phenotype. In patients with active EoE, resident MCs assumed an activated phenotype, and 2 additional proinflammatory MC populations emerged in the intraepithelial compartment, each linked to a proliferating MKI67high cluster. One proinflammatory activated MC population, marked as KIThighIL1RL1highFCER1Alow, was not detected in disease remission (termed "transient MC"), whereas the other population, marked as CMA1highCTSGhigh, was detected in disease remission where it maintained an activated state (termed "persistent MC"). MCs were prominent producers of esophageal IL-13 mRNA and protein, a key therapeutic target in EoE. CONCLUSIONS: Esophageal MCs comprise heterogeneous populations with transcriptional signatures associated with distinct spatial compartmentalization and EoE disease status. In active EoE, they assume a proinflammatory state and locally proliferate, and they remain activated and poised to reinitiate inflammation even during disease remission.


Assuntos
Esofagite Eosinofílica , Proliferação de Células , Esofagite Eosinofílica/genética , Esofagite Eosinofílica/metabolismo , Humanos , Mastócitos/patologia , Análise de Sequência de RNA
7.
Cell ; 185(4): 614-629.e21, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35148840

RESUMO

Activation of the innate immune system via pattern recognition receptors (PRRs) is key to generate lasting adaptive immunity. PRRs detect unique chemical patterns associated with invading microorganisms, but whether and how the physical properties of PRR ligands influence the development of the immune response remains unknown. Through the study of fungal mannans, we show that the physical form of PRR ligands dictates the immune response. Soluble mannans are immunosilent in the periphery but elicit a potent pro-inflammatory response in the draining lymph node (dLN). By modulating the physical form of mannans, we developed a formulation that targets both the periphery and the dLN. When combined with viral glycoprotein antigens, this mannan formulation broadens epitope recognition, elicits potent antigen-specific neutralizing antibodies, and confers protection against viral infections of the lung. Thus, the physical properties of microbial ligands determine the outcome of the immune response and can be harnessed for vaccine development.


Assuntos
Adjuvantes Imunológicos/farmacologia , Antígenos Virais/imunologia , Candida albicans/química , Mananas/imunologia , Hidróxido de Alumínio/química , Animais , Anticorpos Neutralizantes/imunologia , Especificidade de Anticorpos/imunologia , Linfócitos B/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/virologia , Chlorocebus aethiops , Epitopos/imunologia , Imunidade Inata , Imunização , Inflamação/patologia , Interferons/metabolismo , Lectinas Tipo C/metabolismo , Ligantes , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Linfonodos/imunologia , Linfonodos/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Seios Paranasais/metabolismo , Subunidades Proteicas/metabolismo , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Solubilidade , Glicoproteína da Espícula de Coronavírus/metabolismo , Linfócitos T/imunologia , Fator de Transcrição RelB/metabolismo , Células Vero , beta-Glucanas/metabolismo
8.
Trends Parasitol ; 38(3): 191-192, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35078723

RESUMO

Type 2 inflammation (T2I) accompanies many inflammatory diseases. In a recent issue of Cell, Ahrends et al. demonstrate that helminth-elicited T2I preserves excitatory neurons and enteric function through the expansion of Arginase-1 (Arg-1)-expressing macrophages, thereby extending our understanding of the protective functions that T2I can orchestrate in inflamed barrier tissue.


Assuntos
Inflamação , Macrófagos , Humanos
9.
Sci Immunol ; 6(66): eabj0474, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-34932383

RESUMO

Aeroallergen sensing by airway epithelial cells triggers pathogenic immune responses leading to type 2 inflammation, the hallmark of chronic airway diseases such as asthma. Tuft cells are rare epithelial cells and the dominant source of interleukin-25 (IL-25), an epithelial cytokine, and cysteinyl leukotrienes (CysLTs), lipid mediators of vascular permeability and chemotaxis. How these two mediators derived from the same cell might cooperatively promote type 2 inflammation in the airways has not been clarified. Here, we showed that inhalation of the parent leukotriene C4 (LTC4) in combination with a subthreshold dose of IL-25 led to activation of two innate immune cells: inflammatory type 2 innate lymphoid cell (ILC2) for proliferation and cytokine production, and dendritic cells (DCs). This cooperative effect led to a much greater recruitment of eosinophils and CD4+ T cell expansion indicative of synergy. Whereas lung eosinophilia was dominantly mediated through the classical CysLT receptor CysLT1R, type 2 cytokines and activation of innate immune cells required signaling through CysLT1R and partially CysLT2R. Tuft cell­specific deletion of Ltc4s, the terminal enzyme required for CysLT production, reduced lung inflammation and the systemic immune response after inhalation of the mold aeroallergen Alternaria; this effect was further enhanced by concomitant blockade of IL-25. Our findings identified a potent synergy of CysLTs and IL-25 downstream of aeroallergen-trigged activation of airway tuft cells leading to a highly polarized type 2 immune response and further implicate airway tuft cells as powerful modulators of type 2 immunity in the lungs.


Assuntos
Cisteína/imunologia , Células Epiteliais/imunologia , Interleucinas/imunologia , Leucotrienos/imunologia , Pneumonia/imunologia , Animais , Camundongos , Camundongos Transgênicos
10.
Bio Protoc ; 11(18): e4163, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34692913

RESUMO

Solitary chemosensory epithelial cells are scattered in most mucosal surfaces. They are referred to as tuft cells in the intestinal mucosa, brush cells in the trachea, and solitary chemosensory and microvillous cells in the nasal mucosa. They are the primary source of IL-25 in the epithelium and are also engaged in acetylcholine generation. We recently demonstrated that nasal solitary chemosensory (brush) cells can generate robust levels of cysteinyl leukotrienes in response to stimulation with calcium ionophore, aeroallergens, and danger-associated molecules, such as ATP and UTP, and this mechanism depends on brush cell expression of the purinergic receptor P2Y2. This protocol describes an effective method of nasal brush cell isolation in the mouse. The method is based on physical separation of the mucosal layer of the nasal cavity and pre-incubation with dispase, followed by digestion with papain solution. The single cell suspension obtained this way contains a high yield of brush cells for fluorescence-activated cell sorting (FACS), RNA-sequencing, and ex vivo assays. Graphic abstract: Workflow of nasal digestion for brush cell isolation.

12.
Sci Immunol ; 6(56)2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33637594

RESUMO

Mast cells (MCs) play a pathobiologic role in type 2 (T2) allergic inflammatory diseases of the airway, including asthma and chronic rhinosinusitis with nasal polyposis (CRSwNP). Distinct MC subsets infiltrate the airway mucosa in T2 disease, including subepithelial MCs expressing the proteases tryptase and chymase (MCTC) and epithelial MCs expressing tryptase without chymase (MCT). However, mechanisms underlying MC expansion and the transcriptional programs underlying their heterogeneity are poorly understood. Here, we use flow cytometry and single-cell RNA-sequencing (scRNA-seq) to conduct a comprehensive analysis of human MC hyperplasia in CRSwNP, a T2 cytokine-mediated inflammatory disease. We link discrete cell surface phenotypes to the distinct transcriptomes of CRSwNP MCT and MCTC, which represent polarized ends of a transcriptional gradient of nasal polyp MCs. We find a subepithelial population of CD38highCD117high MCs that is markedly expanded during T2 inflammation. These CD38highCD117high MCs exhibit an intermediate phenotype relative to the expanded MCT and MCTC subsets. CD38highCD117high MCs are distinct from circulating MC progenitors and are enriched for proliferation, which is markedly increased in CRSwNP patients with aspirin-exacerbated respiratory disease, a severe disease subset characterized by increased MC burden and elevated MC activation. We observe that MCs expressing a polyp MCT-like effector program are also found within the lung during fibrotic diseases and asthma, and further identify marked differences between MCTC in nasal polyps and skin. These results indicate that MCs display distinct inflammation-associated effector programs and suggest that in situ MC proliferation is a major component of MC hyperplasia in human T2 inflammation.


Assuntos
Mucosa Nasal/patologia , Pólipos Nasais/imunologia , Rinite/imunologia , Sinusite/imunologia , Adulto , Idoso , Proliferação de Células , Endoscopia , Feminino , Citometria de Fluxo , Humanos , Masculino , Mastócitos , Pessoa de Meia-Idade , Mucosa Nasal/citologia , Mucosa Nasal/imunologia , Mucosa Nasal/cirurgia , Pólipos Nasais/patologia , Procedimentos Cirúrgicos Nasais , RNA-Seq , Rinite/patologia , Rinite/cirurgia , Análise de Célula Única , Sinusite/patologia , Sinusite/cirurgia , Adulto Jovem
13.
J Allergy Clin Immunol ; 148(1): 195-208.e5, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33285161

RESUMO

BACKGROUND: The 3 cysteinyl leukotrienes (cysLTs), leukotriene (LT) C4 (LTC4), LTD4, and LTE4, have different biologic half-lives, cellular targets, and receptor specificities. CysLT2R binds LTC4 and LTD4in vitro with similar affinities, but it displays a marked selectivity for LTC4in vivo. LTC4, but not LTD4, strongly potentiates allergen-induced pulmonary eosinophilia in mice through a CysLT2R-mediated, platelet- and IL-33-dependent pathway. OBJECTIVE: We sought to determine whether LTD4 functionally antagonizes LTC4 signaling at CysLT2R. METHODS: We used 2 different in vivo models of CysLT2R-dependent immunopathology, as well as ex vivo activation of mouse and human platelets. RESULTS: LTC4-induced CD62P expression; HMGB1 release; and secretions of thromboxane A2, CXCL7, and IL-33 by mouse platelets were all were blocked by a selective CysLT2R antagonist and inhibited by LTD4. These effects did not depend on CysLT1R. Inhaled LTD4 blocked LTC4-mediated potentiation of ovalbumin-induced eosinophilic inflammation; recruitment of platelet-adherent eosinophils; and increases in IL-33, IL-4, IL-5, and IL-13 levels in lung tissue. In contrast, the effect of administration of LTE4, the preferred ligand for CysLT3R, was additive with LTC4. The administration of LTD4 to Ptges-/- mice, which display enhanced LTC4 synthesis similar to that in aspirin-exacerbated respiratory disease, completely blocked the physiologic response to subsequent lysine-aspirin inhalation challenges, as well as increases in levels of IL-33, type 2 cytokines, and biochemical markers of mast cell and platelet activation. CONCLUSION: The conversion of LTC4 to LTD4 may limit the duration and extent of potentially deleterious signaling through CysLT2R, and it may contribute to the therapeutic properties of desensitization to aspirin in aspirin-exacerbated respiratory disease.


Assuntos
Plaquetas/imunologia , Leucotrieno C4/imunologia , Leucotrieno D4/imunologia , Pulmão/imunologia , Ativação Plaquetária/imunologia , Animais , Asma/imunologia , Cisteína/imunologia , Citocinas/imunologia , Leucotrieno E4/imunologia , Leucotrienos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Eosinofilia Pulmonar/imunologia , Receptores de Leucotrienos/imunologia
14.
J Exp Med ; 218(1)2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-32946563

RESUMO

Murine mast cells (MCs) contain two lineages: inducible bone marrow-derived mucosal MCs (MMCs) and constitutive embryonic-derived connective tissue MCs (CTMCs). Here, we use RNA sequencing, flow cytometry, and genetic deletion in two allergic lung inflammation models to define these two lineages. We found that inducible MCs, marked by ß7 integrin expression, are highly distinct from airway CTMCs at rest and during inflammation and unaffected by targeted CTMC deletion. ß7High MCs expand and mature during lung inflammation as part of a TGF-ß-inducible transcriptional program that includes the MMC-associated proteases Mcpt1 and Mcpt2, the basophil-associated protease Mcpt8, granule components, and the epithelial-binding αE integrin. In vitro studies using bone marrow-derived MCs (BMMCs) identified a requirement for SCF in this this TGF-ß-mediated development and found that epithelial cells directly elicit TGF-ß-dependent BMMC up-regulation of mMCP-1 and αE integrin. Thus, our findings characterize the expansion of a distinct inducible MC subset in C57BL/6 mice and highlight the potential for epithelium to direct MMC development.


Assuntos
Asma/imunologia , Células da Medula Óssea/imunologia , Linhagem da Célula/imunologia , Mastócitos/imunologia , Mucosa Respiratória/imunologia , Animais , Asma/embriologia , Asma/genética , Asma/patologia , Células da Medula Óssea/patologia , Linhagem da Célula/genética , Cadeias beta de Integrinas/genética , Cadeias beta de Integrinas/imunologia , Mastócitos/patologia , Camundongos , Camundongos Transgênicos , Mucosa Respiratória/embriologia , Mucosa Respiratória/patologia , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/imunologia , Triptases/genética , Triptases/imunologia
15.
Cell ; 181(5): 1016-1035.e19, 2020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32413319

RESUMO

There is pressing urgency to understand the pathogenesis of the severe acute respiratory syndrome coronavirus clade 2 (SARS-CoV-2), which causes the disease COVID-19. SARS-CoV-2 spike (S) protein binds angiotensin-converting enzyme 2 (ACE2), and in concert with host proteases, principally transmembrane serine protease 2 (TMPRSS2), promotes cellular entry. The cell subsets targeted by SARS-CoV-2 in host tissues and the factors that regulate ACE2 expression remain unknown. Here, we leverage human, non-human primate, and mouse single-cell RNA-sequencing (scRNA-seq) datasets across health and disease to uncover putative targets of SARS-CoV-2 among tissue-resident cell subsets. We identify ACE2 and TMPRSS2 co-expressing cells within lung type II pneumocytes, ileal absorptive enterocytes, and nasal goblet secretory cells. Strikingly, we discovered that ACE2 is a human interferon-stimulated gene (ISG) in vitro using airway epithelial cells and extend our findings to in vivo viral infections. Our data suggest that SARS-CoV-2 could exploit species-specific interferon-driven upregulation of ACE2, a tissue-protective mediator during lung injury, to enhance infection.


Assuntos
Células Epiteliais Alveolares/metabolismo , Enterócitos/metabolismo , Células Caliciformes/metabolismo , Interferon Tipo I/metabolismo , Mucosa Nasal/citologia , Peptidil Dipeptidase A/genética , Adolescente , Células Epiteliais Alveolares/imunologia , Enzima de Conversão de Angiotensina 2 , Animais , Betacoronavirus/fisiologia , COVID-19 , Linhagem Celular , Células Cultivadas , Criança , Infecções por Coronavirus/virologia , Enterócitos/imunologia , Células Caliciformes/imunologia , Infecções por HIV/imunologia , Humanos , Influenza Humana/imunologia , Interferon Tipo I/imunologia , Pulmão/citologia , Pulmão/patologia , Macaca mulatta , Camundongos , Mycobacterium tuberculosis , Mucosa Nasal/imunologia , Pandemias , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/virologia , Receptores Virais/genética , SARS-CoV-2 , Serina Endopeptidases/metabolismo , Análise de Célula Única , Tuberculose/imunologia , Regulação para Cima
16.
J Allergy Clin Immunol ; 145(6): 1574-1584, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32199912

RESUMO

BACKGROUND: The cause of severe nasal polyposis in aspirin-exacerbated respiratory disease (AERD) is unknown. Elevated antibody levels have been associated with disease severity in nasal polyps, but upstream drivers of local antibody production in nasal polyps are undetermined. OBJECTIVE: We sought to identify upstream drivers and phenotypic properties of local antibody-expressing cells in nasal polyps from subjects with AERD. METHODS: Sinus tissue was obtained from subjects with AERD, chronic rhinosinusitis (CRS) with nasal polyps (CRSwNP), CRS without nasal polyps, and controls without CRS. Tissue antibody levels were quantified via ELISA and immunohistochemistry and were correlated with disease severity. Antibody-expressing cells were profiled with single-cell RNA sequencing, flow cytometry, and immunofluorescence, with IL-5Rα function determined through IL-5 stimulation and subsequent RNA sequencing and quantitative PCR. RESULTS: Tissue IgE and IgG4 levels were elevated in AERD compared with in controls (P < .01 for IgE and P < .001 for IgG4 vs CRSwNP). Subjects with AERD whose nasal polyps recurred rapidly had higher IgE levels than did subjects with AERD, with slower regrowth (P = .005). Single-cell RNA sequencing revealed increased IL5RA, IGHG4, and IGHE in antibody-expressing cells from patients with AERD compared with antibody-expressing cells from patients with CRSwNP. There were more IL-5Rα+ plasma cells in the polyp tissue from those with AERD than in polyp tissue from those with CRSwNP (P = .026). IL-5 stimulation of plasma cells in vitro induced changes in a distinct set of transcripts. CONCLUSIONS: Our study identifies an increase in antibody-expressing cells in AERD defined by transcript enrichment of IL5RA and IGHG4 or IGHE, with confirmed surface expression of IL-5Rα and functional IL-5 signaling. Tissue IgE and IgG4 levels are elevated in AERD, and higher IgE levels are associated with faster nasal polyp regrowth. Our findings suggest a role for IL-5Rα+ antibody-expressing cells in facilitating local antibody production and severe nasal polyps in AERD.


Assuntos
Aspirina/efeitos adversos , Imunoglobulina E/metabolismo , Imunoglobulina G/metabolismo , Subunidade alfa de Receptor de Interleucina-5/metabolismo , Pólipos Nasais/metabolismo , Sinusite/metabolismo , Adulto , Idoso , Anticorpos/metabolismo , Feminino , Humanos , Interleucina-5/metabolismo , Masculino , Pessoa de Meia-Idade , Pólipos Nasais/induzido quimicamente , Plasmócitos/efeitos dos fármacos , Plasmócitos/metabolismo , Análise de Sequência de RNA/métodos , Sinusite/induzido quimicamente , Adulto Jovem
17.
Immunity ; 52(3): 528-541.e7, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32160525

RESUMO

Helminths, allergens, and certain protists induce type 2 immune responses, but the underlying mechanisms of immune activation remain poorly understood. In the small intestine, chemosensing by epithelial tuft cells results in the activation of group 2 innate lymphoid cells (ILC2s), which subsequently drive increased tuft cell frequency. This feedforward circuit is essential for intestinal remodeling and helminth clearance. ILC2 activation requires tuft-cell-derived interleukin-25 (IL-25), but whether additional signals regulate the circuit is unclear. Here, we show that tuft cells secrete cysteinyl leukotrienes (cysLTs) to rapidly activate type 2 immunity following chemosensing of helminth infection. CysLTs cooperate with IL-25 to activate ILC2s, and tuft-cell-specific ablation of leukotriene synthesis attenuates type 2 immunity and delays helminth clearance. Conversely, cysLTs are dispensable for the tuft cell response induced by intestinal protists. Our findings identify an additional tuft cell effector function and suggest context-specific regulation of tuft-ILC2 circuits within the small intestine.


Assuntos
Cisteína/imunologia , Mucosa Intestinal/imunologia , Intestino Delgado/imunologia , Leucotrienos/imunologia , Nippostrongylus/imunologia , Infecções por Strongylida/imunologia , Animais , Araquidonato 5-Lipoxigenase/genética , Araquidonato 5-Lipoxigenase/imunologia , Araquidonato 5-Lipoxigenase/metabolismo , Cisteína/metabolismo , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Células Epiteliais/parasitologia , Imunidade Inata/imunologia , Interleucina-17/genética , Interleucina-17/imunologia , Interleucina-17/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/parasitologia , Intestino Delgado/citologia , Intestino Delgado/metabolismo , Leucotrienos/metabolismo , Linfócitos/imunologia , Linfócitos/metabolismo , Linfócitos/parasitologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Nippostrongylus/fisiologia , Infecções por Strongylida/parasitologia
18.
Ann Allergy Asthma Immunol ; 124(4): 333-341, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32007569

RESUMO

OBJECTIVE: To review the latest discoveries on airway epithelial cell diversity and remodeling in type 2 inflammation, including nasal polyposis. DATA SOURCES: Reviews and primary research manuscripts were identified from PubMed, Google, and Bioarchives, using the search words airway epithelium, nasal polyposis, or chronic rhinosinusitis with nasal polyposis AND basal cell, ciliated cell, secretory cell, goblet cell, neuroendocrine cell, pulmonary neuroendocrine cell, ionocyte, brush cell, solitary chemosensory cell, microvillus cell, or tuft cell. STUDY SELECTIONS: Studies were selected based on novelty and likely relevance to airway epithelial innate immune functions or the pathobiology of type 2 inflammation. RESULTS: Airway epithelial cells are more diverse than previously appreciated, with specialized subsets, including ionocytes, solitary chemosensory cells, and neuroendocrine cells that contribute to important innate immune functions. In chronic rhinosinusitis with nasal polyposis, the composition of the epithelium is significantly altered. Loss of ciliated cells and submucosal glands and an increase in basal airway epithelial progenitors leads to loss of innate immune functions and an expansion of proinflammatory potential. Type 2 cytokines play a major role in driving this process. CONCLUSION: Airway epithelial remodeling in chronic rhinosinusitis is extensive, leading to loss of innate immune function and enhanced proinflammatory potential. The mechanisms driving airway remodeling and its sequelae deserve further attention before restitution of epithelial differentiation can be considered a reasonable therapeutic target.


Assuntos
Remodelação das Vias Aéreas , Mucosa Nasal/patologia , Pólipos Nasais/patologia , Rinite/patologia , Sinusite/patologia , Doença Crônica , Humanos , Inflamação/imunologia , Inflamação/patologia , Mucosa Nasal/imunologia , Pólipos Nasais/imunologia , Rinite/imunologia , Sinusite/imunologia
19.
Sci Immunol ; 5(43)2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31953256

RESUMO

Chemosensory epithelial cells (EpCs) are specialized cells that promote innate type 2 immunity and protective neurally mediated reflexes in the airway. Their effector programs and modes of activation are not fully understood. Here, we define the transcriptional signature of two choline acetyltransferase-expressing nasal EpC populations. They are found in the respiratory and olfactory mucosa and express key chemosensory cell genes including the transcription factor Pou2f3, the cation channel Trpm5, and the cytokine Il25 Moreover, these cells share a core transcriptional signature with chemosensory cells from intestine, trachea and thymus, and cluster with tracheal brush cells (BrCs) independently from other respiratory EpCs, indicating that they are part of the brush/tuft cell family. Both nasal BrC subsets express high levels of transcripts encoding cysteinyl leukotriene (CysLT) biosynthetic enzymes. In response to ionophore, unfractionated nasal BrCs generate CysLTs at levels exceeding that of the adjacent hematopoietic cells isolated from naïve mucosa. Among activating receptors, BrCs express the purinergic receptor P2Y2. Accordingly, the epithelial stress signal ATP and aeroallergens that elicit ATP release trigger BrC CysLT generation, which is mediated by the P2Y2 receptor. ATP- and aeroallergen-elicited CysLT generation in the nasal lavage is reduced in mice lacking Pou2f3, a requisite transcription factor for BrC development. Last, aeroallergen-induced airway eosinophilia is reduced in BrC-deficient mice. These results identify a previously undescribed BrC sensor and effector pathway leading to generation of lipid mediators in response to luminal signals. Further, they suggest that BrC sensing of local damage may provide an important sentinel immune function.


Assuntos
Cisteína/imunologia , Células Epiteliais/imunologia , Leucotrienos/imunologia , Receptores Purinérgicos P2Y2/imunologia , Trifosfato de Adenosina , Alérgenos , Animais , Células da Medula Óssea/imunologia , Células Cultivadas , Feminino , Masculino , Camundongos , Mucosa Nasal/imunologia , Traqueia/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...